Issue 7, 2017, Issue in Progress

Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide

Abstract

A free-standing, flexible, and semi-transparent MoO3 nanopaper was fabricated using ultralong MoO3 nanobelts (length ∼ 200 μm; width 200–400 nm), and its gas-sensing characteristics were investigated. The sensor exhibited high responses (resistance ratio) of 49 to 5 parts per million (ppm) hydrogen sulfide (H2S) at 250 °C and 121 to 5 ppm trimethylamine (TMA) at 325 °C with excellent gas selectivity, demonstrating its dual function for gas detection. Moreover, the sensor showed promising potential for the all-in-one detection of three representative offensive odors (TMA, H2S, and NH3) simply by tuning of the sensing temperature. This particular performance is attributed to the high chemical affinity of MoO3 to H2S and the acid–base interaction between basic TMA/NH3 and acidic MoO3. The mechanism underlying the control of gas selectivity by modulating the sensor temperature was investigated by Diffuse Reflectance Infrared Fourier Transform (DRIFT) measurements.

Graphical abstract: Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2016
Accepted
01 Dec 2016
First published
17 Jan 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 3680-3685

Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide

H. Li, L. Huang, X. Wang, C. Lee, J. Yoon, J. Zhou, X. Guo and J. Lee, RSC Adv., 2017, 7, 3680 DOI: 10.1039/C6RA26280E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements