Issue 18, 2017, Issue in Progress

Effect of metal on the methanol to aromatics conversion over modified ZSM-5 in the presence of carbon dioxide

Abstract

To improve the aromatics yield of methanol to aromatics conversion (MTA) over zeolite, which has become a potential route for producing aromatics, modified ZSM-5 catalysts with equimolar metals denoted as EM-X/ZSM-5 (X = Zn, Cu, Ag, and Ni) were investigated under CO2 and N2 flow for MTA in a fixed-bed reactor. The physicochemical properties were characterized by atomic absorption spectroscopy (AAS), N2 adsorption–desorption isotherms, X-ray diffraction (XRD), and NH3 temperature-programmed desorption (NH3-TPD). Comparison with the results obtained in pure N2 flow showed that catalysts doped with Zn, Ni, and Ag could promote aromatization activity and BTX yield in the presence of CO2. Among these, EM-Zn/ZSM-5 showed an aromatics yield of 59.05%, with an increase of 8.1%, whereas EM-Cu/ZSM-5 was found to reduce the aromatization activity in the presence of CO2. Moreover, the interaction mechanism of the active sites of the catalysts with CO2 for the MTA reaction was explored on the basis of the absorbability of the catalysts for CO2, which was studied by CO2 temperature-programmed desorption (CO2-TPD); the activation ability for CO2 to combine with hydrogen was investigated by the catalytic reaction of CO2 + H2, and the verification experiments for the coupling behavior of ZSM-5 doped with different contents of Zn in the presence of CO2 were carried out.

Graphical abstract: Effect of metal on the methanol to aromatics conversion over modified ZSM-5 in the presence of carbon dioxide

Article information

Article type
Paper
Submitted
21 Nov 2016
Accepted
14 Jan 2017
First published
08 Feb 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 10729-10736

Effect of metal on the methanol to aromatics conversion over modified ZSM-5 in the presence of carbon dioxide

C. Xu, B. Jiang, Z. Liao, J. Wang, Z. Huang and Y. Yang, RSC Adv., 2017, 7, 10729 DOI: 10.1039/C6RA27104A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements