Issue 24, 2017, Issue in Progress

Fabrication of ultra-smooth and oxide-free molecule-ferromagnetic metal interfaces for applications in molecular electronics under ordinary laboratory conditions

Abstract

Self-assembled monolayers of alkanethiolates on ferromagnetic metal surfaces have potential applications in molecular spintronics, but the fabrication of such structures is complicated by unwanted oxidation of the ferromagnetic metal. This paper describes the fabrication of ultra-smooth oxide-free Ni surfaces via template-stripping which are protected by SAMs of S(CH2)n−1CH3 that are stable for 1 day in ambient environment. Our method does not require ultra-high vacuum conditions, glove-box techniques, or (redox) cleaning of the Ni surface, but can be readily applied under ordinary laboratory conditions. Passivation of the Si/SiO2 template with a layer of FOTS (1H,1H,2H,2H-perfluorooctyltrichlorosilane) reduced the Ni-template interaction sufficiently enabling successful template-stripping. The NiTS–SAM interfaces were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). We found that the surfaces were ultra-flat with a root mean square surface roughness of 0.15 ± 0.05 nm over 1.0 × 1.0 μm2 and that they were stable against oxidation for 1 day in air at room temperature. These SAMs on Ni were incorporated in SAM-based tunneling junctions of the form NiTS–SCn//GaOx/EGaIn to study the tunneling rate across the SAMs. The tunneling rate is highly sensitive to defects in the SAMs or the presences of oxides. We found that the charge transport properties across these junctions were indistinguishable from those junctions with formed on AuTS and AgTS substrates from which we conclude that our method yields high quality NiTS–SAM interfaces suitable for applications in molecular electronics.

Graphical abstract: Fabrication of ultra-smooth and oxide-free molecule-ferromagnetic metal interfaces for applications in molecular electronics under ordinary laboratory conditions

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2016
Accepted
24 Feb 2017
First published
06 Mar 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 14544-14551

Fabrication of ultra-smooth and oxide-free molecule-ferromagnetic metal interfaces for applications in molecular electronics under ordinary laboratory conditions

K. Senthil kumar, L. Jiang and C. A. Nijhuis, RSC Adv., 2017, 7, 14544 DOI: 10.1039/C6RA27280K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements