Cascade catalysis via dehydration and oxidation: one-pot synthesis of 2,5-diformylfuran from fructose using acid and V2O5/ceramic catalysts†
Abstract
2,5-Diformylfuran (2,5-DFF) is an important biomass chemical with broad application prospects. A vanadium pentoxide (V2O5)/ceramic powder catalyst (V-CP) was designed and synthesized in this study, and its structure was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and specific surface area analysis (BET). The catalytic properties of the V-CP catalyst were evaluated. The results show that 5-hydroxymethylfurfural (5-HMF) can be completely converted to 2,5-DFF at 140 °C under atmospheric pressure in the presence of oxygen as the oxidant in dimethyl sulfoxide (DMSO) for 5 h, and the yield of 2,5-DFF was 85.7%. After recycling the catalyst 5 times, the catalytic effect decreased slightly, and the catalyst showed good recovery performance. Furthermore, a one-pot method for the preparation of 2,5-DFF was proposed by using fructose as the raw material and V2O5/ceramic-dilute sulfuric acid as the catalyst. The fructose was dehydrated to form 5-HMF, and 2,5-DFF was generated by the V-CP catalytic oxidation of 5-HMF. The 2,5-DFF yield was 68.4%. The results of this study provide a valuable reference for the efficient one-pot synthesis of biomass-based furan chemicals.