Light activated non-reciprocal motion in liquid crystalline networks by designed microactuator architecture†‡
Abstract
Light responsive liquid crystalline networks were prepared by photopolymerization of azobenzene-doped mesogen mixtures and applied for production of micro-actuators by a laser writing technique. Adjusting the cross-linker content was found to be an efficient and easy way to control the dynamics of light-induced deformation from the micro- up to the macro-meter length scales. Starting from a complete characterization of the response of millimeter-sized stripes under irradiation with different sources (LED and laser light), micro-structures based on different monomer mixtures were analyzed for micro-actuator preparation. Double stripes, able to perform a light driven asymmetric movement due to the different mixture properties, were created by a double step process through a laser writing system. These results are a simple demonstration of an optically activated non-reciprocal movement in the microscale by a chemical material manipulation. Moreover, we demonstrate a rapid actuator dynamics that allows a movement in the second time scale for macrostructures and a millisecond actuation in the microscale.