Issue 50, 2017, Issue in Progress

Effect of organic cathode interfacial layers on efficiency and stability improvement of polymer solar cells

Abstract

The cathode interfacial layer (CIL) plays a vital role in enhancing the efficiency and lifetime performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we compared the use of various organic semiconducting molecules, tris(8-hydroxyquinolinato) aluminum (Alq3), bathocuproine (BCP) and 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB), as CILs in PSCs and analyzed their influence on device performance. Compared to the inorganic LiF CIL-based PSCs, significantly higher photovoltaic performance was observed by using these organic CILs in both PTB7:PC71BM and P3HT:PC61BM PSCs. Specifically, TmPyPB CIL-based devices exhibit superior device stability and high power conversion efficiency (PCE) up to 7.96%. A systematic study on the effects of Frontier orbital energy levels, surface morphology, and electron mobility of CILs suggests that a relatively coarse interface morphology would be helpful in the formation of high-density interfacial defect states for efficient electron extraction and a high mobility is of central importance in facilitating electron collection for high PCEs. Moreover, a synergistic effect between the inorganic LiF and organic molecules in the dual-CIL could contribute to the further enhancement of PSC efficiency (8.01%) and ambient stability. This work reveals fundamental principles in regulating the functions of CILs and would hopefully promote the investigation and development of ideal organic CILs for high-performance PSCs.

Graphical abstract: Effect of organic cathode interfacial layers on efficiency and stability improvement of polymer solar cells

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2017
Accepted
05 Jun 2017
First published
16 Jun 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 31158-31163

Effect of organic cathode interfacial layers on efficiency and stability improvement of polymer solar cells

M. Li, W. Zhang, H. Wang, L. Chen, C. Zheng and R. Chen, RSC Adv., 2017, 7, 31158 DOI: 10.1039/C7RA04586G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements