Simultaneously high thermal stability and ultra-fast phase change speed based on samarium-doped antimony thin films
Abstract
The trade-off between crystallization speed and thermal stability has been a challenge to improve the performance of phase change memory. Herein, we propose samarium (Sm)-doped antimony (Sb) materials, in which the Sm doping influences the thermal stability to simultaneously realize high thermal stability and ultra-fast phase change speed. We show that slight Sm doping (<3%) can improve the crystallization temperature (Tc) up to 242 °C and their relevant 10 year data retention up to 159 °C with an ultra-fast speed of ∼2 ns. The high performance of Sm doped Sb thin film was attributed to the formation of Sm–Sb bonds measured by XPS. These results suggest that the Sm doped Sb materials are promising candidates for phase change memory, and the rare-earth (RE) doping-induced improvement in performance could be extended to other chalcogenide films.