Issue 71, 2017, Issue in Progress

The application of a UHPLC system to study the formation of various chemical species by compounds undergoing efficient self-aggregation and to determine the homodimerization constants (KDM) with values in the high range of 106–1010 M−1

Abstract

This work demonstrates a new concept for the use of UHPLC methodology for identification of the species formed by a self-aggregating compound depending on its concentration and solvent used, as well as to determine very large homodimerization constants (KDM = 106–1010 M−1). It is impossible to obtain such data with traditional UV-VIS and NMR measurements in compounds that undergo easy self-aggregation when their KDM values are very large (≥107 M−1). The application of the UHPLC method in tandem with a UV-VIS photodiode spectrophotometer as a detector, as well as an emission detector allowed us to perform measurements at extremely low dye concentrations (down to 10−8 M in the absorption measurement and down to 10−10 M in the fluorescence measurement). Using the well-known probe 7-aminocoumarin (C120) as a model system, we separated the monomer (M) and dimer (DM) species, and determined their concentrations and individual absorption spectra. The position of the long wavelength band in the monomer absorption spectrum agreed very well with theoretically calculated values of vertical excitation energy to the S1 state of the C120 monomer. To the best of our knowledge, this is the first report on the very efficient self-aggregation of C120 in solution, with KDM = 1.5 × 109 M−1 in polar ACN and KDM = 9 × 109 M−1 in more weakly interacting 1-chlorobutane (ChB).

Graphical abstract: The application of a UHPLC system to study the formation of various chemical species by compounds undergoing efficient self-aggregation and to determine the homodimerization constants (KDM) with values in the high range of 106–1010 M−1

Supplementary files

Article information

Article type
Paper
Submitted
04 May 2017
Accepted
07 Sep 2017
First published
20 Sep 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 44843-44859

The application of a UHPLC system to study the formation of various chemical species by compounds undergoing efficient self-aggregation and to determine the homodimerization constants (KDM) with values in the high range of 106–1010 M−1

M. Hetmańska and A. Maciejewski, RSC Adv., 2017, 7, 44843 DOI: 10.1039/C7RA05051H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements