Issue 85, 2017

In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering

Abstract

In the present study, we fabricated a biocomposite scaffold composed of carboxymethyl chitosan (CMC), gelatin and LAPONITE® (Lap) nanoparticles via freeze-drying and investigated its potential use in bone tissue engineering. The prepared gelatin/carboxymethyl chitosan (GC) scaffolds and laponite-incorporated scaffolds were characterized by scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analyses. The swelling and biodegradation were also investigated. In vitro assays such as cell attachment and proliferation, osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMCSs) grown on those scaffolds and in vivo cranial bone defect assays were further carried out. We found that our prepared scaffolds had a porous architecture, and the increased Lap content resulted in improved mechanical strength, whereas the swelling ratio and degradation rate decreased. In vitro cell proliferation and live cell staining experiments demonstrated that the addition of Lap (5 and 10 wt% relative to gelatin, GC-Lap5% and GC-Lap10% respectively) would facilitate cell proliferation, but caused an inhibition effect at 15% of Lap content (GC-Lap15%). Furthermore, GC-Lap10% induced a higher degree of osteogenic differentiation of rBMSCs compared with the GC scaffold and GC-Lap5% scaffold. More importantly, in vivo cranial defect experiments revealed that the addition of Lap into the GC scaffold promoted bone regeneration. These findings indicate that a composite scaffold with Lap incorporation is a promising material for bone tissue engineering.

Graphical abstract: In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering

Article information

Article type
Paper
Submitted
21 Jun 2017
Accepted
20 Nov 2017
First published
24 Nov 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 54100-54110

In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering

L. Tao, L. Zhonglong, X. Ming, Y. Zezheng, L. Zhiyuan, Z. Xiaojun and W. Jinwu, RSC Adv., 2017, 7, 54100 DOI: 10.1039/C7RA06913H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements