Blue to magenta tunable luminescence from LaGaO3: Bi3+, Cr3+ doped phosphors for field emission display applications†
Abstract
A series of blue to magenta emitting color-tunable LaGaO3: Bi3+/Cr3+ phosphors were prepared by chemical routes, and their phase structure, morphology and photoluminescence (PL) properties were investigated in detail. Luminescence studies indicated that the optimum concentrations of Bi3+ and Cr3+ in LaGaO3 were found to be 1 at% and 3 at%. Co-doping with Bi3+ ions resulted in increased Cr3+ emission intensity and gradual reduction in Bi3+ emission intensity, confirming the presence of a Bi3+–Cr3+ energy transfer. The energy transfer (ET) mechanism from the host lattice to the Bi3+ and Cr3+ ions in the LaGaO3: Bi3+/Cr3+ phosphor has been explained. The ET efficiency has been calculated and found to be 55%. The critical ET distance has been calculated by the concentration-quenching method. The enhanced intensity and tuned luminous color of LaGaO3: Bi3+/Cr3+ phosphors provided a promising material for field emission display devices.