Hybridizing Fe3O4 nanocrystals with nitrogen-doped carbon nanowires for high-performance supercapacitors†
Abstract
This study develops a facile approach to anchor Fe3O4 nanocrystals uniformly onto nitrogen-doped carbon nanowires (NCN). The influence of the ratio of Fe3O4 to NCN on the structure and pseudocapacitance performance of the nanocomposite is investigated systematically. It is found that the best performance is realized when the mass percentage of Fe3O4 is 65.9%. Benefiting from the synergistic effect of the nanostructure and conductive matrix, the optimized nanocomposite delivers high specific capacitance (541.7 F g−1 at 1 A g−1), superior rate capability (337.1 F g−1 at 10 A g−1), as well as good cyclability. This nanocomposite is also used as the anode material for assembling an asymmetric supercapacitor, which exhibits a high specific energy of 59.1 W h kg−1 and high specific power of 17.85 kW kg−1. The results manifest the great potential of this nanocomposite for next-generation high-power applications.