Issue 8, 2017

Using earth abundant materials for the catalytic evolution of hydrogen from electron-coupled proton buffers

Abstract

Hydrogen has a large array of uses throughout the chemical and energy industries, yet is largely produced through the reformation of fossil fuels. Renewable production of hydrogen, via electrolytic water splitting, could be key to moving beyond fossil fuel reliance, but research has mainly focused on maximising efficiency to increase the performance of the electrolysis process. Access to cheap, renewable earth abundant materials to produce hydrogen could be argued to be of equal importance. Electron-coupled proton buffers (ECPBs) have been shown to separate the oxygen and hydrogen evolution reactions of water electrolysis (OER and HER) in space and time, but have previously relied on precious metal catalysts to produce H2. Herein, we report the use of four earth abundant catalysts capable of spontaneously evolving hydrogen from reduced ECPBs. The hydrogen production rate was found to be influenced by both the onset potential of the HER for a particular catalyst, and the redox potential of the ECPB used. The catalysts were shown to evolve hydrogen at rates up to 9.4 mmol H2 per h per mg catalyst and up to 60% of the theoretical maximum hydrogen capacity of the ECPBs.

Graphical abstract: Using earth abundant materials for the catalytic evolution of hydrogen from electron-coupled proton buffers

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2017
Accepted
16 Aug 2017
First published
16 Aug 2017
This article is Open Access
Creative Commons BY license

Sustainable Energy Fuels, 2017,1, 1782-1787

Using earth abundant materials for the catalytic evolution of hydrogen from electron-coupled proton buffers

L. MacDonald, J. C. McGlynn, N. Irvine, I. Alshibane, L. G. Bloor, B. Rausch, J. S. J. Hargreaves and L. Cronin, Sustainable Energy Fuels, 2017, 1, 1782 DOI: 10.1039/C7SE00334J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements