Issue 10, 2017

Diethylenetriamine-mediated self-assembly of three-dimensional hierarchical nanoporous CoP nanoflowers/pristine graphene interconnected networks as efficient electrocatalysts toward hydrogen evolution

Abstract

Highly active, durable, and low-cost hydrogen evolution reaction (HER) catalysts are critical for large-scale energy storage in the form of hydrogen through water splitting but their fabrication presents great challenges. Herein we report the synthesis of a novel 3D hierarchical nanoporous CoP nanoflowers/pristine graphene interconnected network structure via diethylenetriamine (DETA)-mediated self-assembly, in which DETA promoted the uniform dispersion of graphene and the nucleation of the CoP precursor on graphene, the seed aggregation facilitated the formation of nanoflowers and a 3D network, and the gas release during the low-temperature phosphidation produced nanopores inside the nanoflowers. This nanoarchitecture shows an onset potential of −0.014 V, an overpotential of 98.1 mV to achieve 10 mA cm−2, a Tafel slope of 40.9 mV dec−1, and an exchange current density of 0.119 mA cm−2. The onset overpotential, overpotential to achieve 10 mA cm−2, and Tafel slope are all among the lowest reported for non-noble metal hydrogen evolution reaction (HER) catalysts, and the exchange current density also compares favorably to those of most reported HER catalysts. In addition, the catalyst exhibits excellent durability with negligible loss in current density after 2000 cyclic voltammetry (CV) cycles (+0.01 to −0.17 V vs. the RHE, at a scan rate of 100 mV s−1) or 23.5 h of chronoamperometric measurement at an overpotential of 98.1 mV, and a high faradaic efficiency of close to 100%. This work not only creates a high-performance and inexpensive HER electrocatalyst by utilizing the great advantages of 3D hierarchically nanostructured networks, but also develops a facile and economical strategy for the self-assembly of hierarchical nanostructures and offers scientific insight into its mechanism.

Graphical abstract: Diethylenetriamine-mediated self-assembly of three-dimensional hierarchical nanoporous CoP nanoflowers/pristine graphene interconnected networks as efficient electrocatalysts toward hydrogen evolution

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2017
Accepted
06 Oct 2017
First published
09 Oct 2017

Sustainable Energy Fuels, 2017,1, 2172-2180

Diethylenetriamine-mediated self-assembly of three-dimensional hierarchical nanoporous CoP nanoflowers/pristine graphene interconnected networks as efficient electrocatalysts toward hydrogen evolution

X. Fan, X. Wang, W. Yuan and C. M. Li, Sustainable Energy Fuels, 2017, 1, 2172 DOI: 10.1039/C7SE00454K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements