Issue 36, 2017

Zero-charged catanionic lamellar liquid crystals doped with fullerene C60 for potential applications in tribology

Abstract

The formation of lamellar liquid crystals (LLCs) has been demonstrated in a few salt-free catanionic surfactant systems and their properties have been well documented. However, examples of their combination with other materials are relatively rare. Herein, a salt-free zero-charged catanionic surfactant with low chain melting temperature was prepared by mixing equimolar tetradecyltrimethylammonium oxide (TTAOH) and oleic acid (OA) in water, and its concentration-dependent aggregate transition was investigated. In the dilute region (cTTAO ≤ 5 wt%), fluorescence microscopy observations revealed the formation of vesicles (the Lαv phase). Further increasing cTTAO induced a transition from the Lαv phase to LLCs via a region where vesicles and lamellae coexist. With ordered hydrophobic domains, the LLCs can be used as hosts for the doping of fullerene C60 (refers to C60 hereafter) with the highest C60/TTAO weight ratio of 0.04. The doping of C60 effectively improves the viscoelasticity of the LLCs confirmed by rheological characterization while only slight modifications on their matrixes have been detected using small angle X-ray scattering measurements. The LLC/C60 hybrids with cTTAO = 80 wt% were then subjected to tribological measurements, and an obvious reduction in their friction coefficients and wear volumes was observed. The C60/TTAO weight ratio at which the best tribological performance appears was determined to be 0.01. Our results indicate that the combination of C60 and catanionic LLCs could lead to the appearance of a new generation of environmentally-benign lubricants.

Graphical abstract: Zero-charged catanionic lamellar liquid crystals doped with fullerene C60 for potential applications in tribology

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2017
Accepted
31 Jul 2017
First published
31 Jul 2017

Soft Matter, 2017,13, 6250-6258

Zero-charged catanionic lamellar liquid crystals doped with fullerene C60 for potential applications in tribology

M. Chen, B. Liu, X. Wang, Y. Fu, J. Hao and H. Li, Soft Matter, 2017, 13, 6250 DOI: 10.1039/C7SM00800G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements