Issue 39, 2017

Micro-mechanical, continuum-mechanical, and AFM-based descriptions of elasticity in open cylindrical micellar filaments

Abstract

We present theoretical and experimental descriptions of the elasticity of cylindrical micellar filaments using micro-mechanical and continuum theories, and atomic force microscopy. Following our micro-mechanical elasticity model for micellar filaments [M. Asgari, Eur. Phys. J. E: Soft Matter Biol. Phys., 2015, 38(9), 1–16], the elastic bending energy of hemispherical end caps is found. The continuum description of the elastic bending energy of a cylindrical micellar filament is also derived using constrained Cosserat rod theory. While the continuum approach provides macroscopic description of the strain energy of the micellar filament, the micro-mechanical approach has a microscopic view of the filament, and provides expressions for kinetic variables based on a selected interaction potential between the molecules comprising the filament. Our model predicts the dependence of the elastic modulus of the micellar filaments on their diameter, which agrees with previous experimental observations. Atomic force microscopy is applied to estimate the elastic modulus of the filaments using force volume analysis. The obtained values of elastic modulus yield the persistence length of micellar filaments on the same order of the previously reported values. Consistent with previous studies, our results indicate that semi-flexible linear micelles have a relatively large local strain energy at their end points, which explains their tendency to fuse to minimize the number of end caps at relatively low total surfactant volume fractions. Also, the elastic modulus of micellar filaments was found to increase when the indentation frequency increases, a finding which agrees with previous rheological observations on the bulk shear modulus of micellar solutions.

Graphical abstract: Micro-mechanical, continuum-mechanical, and AFM-based descriptions of elasticity in open cylindrical micellar filaments

Article information

Article type
Paper
Submitted
07 May 2017
Accepted
23 Aug 2017
First published
23 Aug 2017

Soft Matter, 2017,13, 7112-7128

Micro-mechanical, continuum-mechanical, and AFM-based descriptions of elasticity in open cylindrical micellar filaments

M. Asgari, Soft Matter, 2017, 13, 7112 DOI: 10.1039/C7SM00911A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements