Issue 40, 2017

Repulsion–attraction switching of nematic colloids formed by liquid crystal dispersions of polygonal prisms

Abstract

Self-assembly of colloidal particles due to elastic interactions in nematic liquid crystals promises tunable composite materials and can be guided by exploiting surface functionalization, geometric shape and topology, though these means of controlling self-assembly remain limited. Here, we realize low-symmetry achiral and chiral elastic colloids in the nematic liquid crystals using colloidal polygonal concave and convex prisms. We show that the controlled pinning of disclinations at the prism edges alters the symmetry of director distortions around the prisms and their orientation with respect to the far-field director. The controlled localization of the disclinations at the prism's edges significantly influences the anisotropy of the diffusion properties of prisms dispersed in liquid crystals and allows one to modify their self-assembly. We show that elastic interactions between polygonal prisms can be switched between repulsive and attractive just by controlled re-pinning the disclinations at different edges using laser tweezers. Our findings demonstrate that elastic interactions between colloidal particles dispersed in nematic liquid crystals are sensitive to the topologically equivalent but geometrically rich controlled configurations of the particle-induced defects.

Graphical abstract: Repulsion–attraction switching of nematic colloids formed by liquid crystal dispersions of polygonal prisms

Article information

Article type
Paper
Submitted
15 Jun 2017
Accepted
07 Sep 2017
First published
07 Sep 2017

Soft Matter, 2017,13, 7398-7405

Repulsion–attraction switching of nematic colloids formed by liquid crystal dispersions of polygonal prisms

B. Senyuk, Q. Liu, P. D. Nystrom and I. I. Smalyukh, Soft Matter, 2017, 13, 7398 DOI: 10.1039/C7SM01186E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements