Issue 11, 2017

Synthesis and side-chain engineering of phenylnaphthalenediimide (PNDI)-based n-type polymers for efficient all-polymer solar cells

Abstract

We designed and synthesized a series of n-type conjugated polymers by introducing phenylnaphthalenediimide (PNDI) as a novel n-type building block, and investigated the effect of side-chain engineering of the polymer acceptors on the performance of all-polymer solar cells (all-PSCs). The optical, electrochemical, and structural properties of the polymers with three different side chains of 2-ethylhexyl (PPNDI-EH), 2-butyloctyl (PPNDI-BO), and 2-hexyldecyl (PPNDI-HD) groups were examined. Interestingly, the PNDI-based polymer having the longest side chain showed a higher degree of edge-on oriented intermolecular assembly in thin films, thereby resulting in the highest field-effect electron mobility among the three polymers. Also, we examined the performance of PNDI-based polymers as polymer acceptors in all-PSCs. Unlike the trend in the field-effect transistor, the PPNDI-BO-based all-PSCs exhibited the highest power conversion efficiency (PCE) of 4.25% among the three polymer blends. This was attributed to the well-balanced hole/electron transport and higher exciton dissociation probability in the PPNDI-BO-based all-PSCs, benefitted from the well-intermixed blend morphology between the polymer donor and PPNDI-BO.

Graphical abstract: Synthesis and side-chain engineering of phenylnaphthalenediimide (PNDI)-based n-type polymers for efficient all-polymer solar cells

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2016
Accepted
10 Feb 2017
First published
13 Feb 2017

J. Mater. Chem. A, 2017,5, 5449-5459

Synthesis and side-chain engineering of phenylnaphthalenediimide (PNDI)-based n-type polymers for efficient all-polymer solar cells

H. Cho, T. Kim, K. Kim, C. Lee, F. S. Kim and B. J. Kim, J. Mater. Chem. A, 2017, 5, 5449 DOI: 10.1039/C6TA10978K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements