Issue 21, 2017

A novel naphthyl side-chained benzodithiophene polymer for efficient photovoltaic cells with a high fill factor of 75%

Abstract

To study which strategy (extending side chain π-conjugation with single-bonded or fused aromatic rings) is more effective in improving the photovoltaic properties of benzodithiophene (BDT)-based polymers, naphthyl (NP) and biphenyl (BP) units were introduced to the BDT core as conjugated side chains. Two polymers PBDTNP-DTBO and PBDTBP-DTBO based on NP or BP-substituted BDT and 5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]oxadiazole (DTBO) were designed. These two polymers only exhibited small differences in the chemical structure, but great differences in photovoltaic performance. PBDTNP-DTBO showed a high power conversion efficiency (PCE) of 8.79%, with an open-circuit voltage (Voc) of 0.82 V, a short-circuit current density (Jsc) of 14.34 mA cm−2, and a fill factor (FF) of 74.73%, while PBDTBP-DTBO only showed a maximum PCE of 6.69%, with a Voc of 0.75 V, a Jsc of 13.55 mA cm−2, and a FF of 65.86%. Hence, extending the side chain π-conjugation system of a BDT-based polymer with naphthyl is a more effective method to enhance the photovoltaic properties.

Graphical abstract: A novel naphthyl side-chained benzodithiophene polymer for efficient photovoltaic cells with a high fill factor of 75%

Supplementary files

Article information

Article type
Paper
Submitted
05 Mar 2017
Accepted
25 Apr 2017
First published
25 Apr 2017

J. Mater. Chem. A, 2017,5, 10430-10436

A novel naphthyl side-chained benzodithiophene polymer for efficient photovoltaic cells with a high fill factor of 75%

D. Ding, J. Wang, Z. Du, F. Li, W. Chen, F. Liu, H. Li, M. Sun and R. Yang, J. Mater. Chem. A, 2017, 5, 10430 DOI: 10.1039/C7TA01994G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements