Issue 21, 2017

A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity

Abstract

Phosphides have high theoretical capacity and low redox voltage, and thus could be favorable for lithium storage. Still, huge volume changes and low electroconductivity hinder their application as the anode materials in lithium-ion batteries. Here, cobalt phosphide nanoparticles encapsulated in a nitrogen-doped carbon matrix by using metal–organic frameworks (ZIF-67) as a self-template have been successfully synthesized and showed excellent electrochemical performance as an anode material for lithium-ion batteries. Cobalt-phosphide-based nanohybrids with different phases can be tailored by accurately controlling the pyrolysis temperature. Electrochemical measurements reveal that the electrochemical performance is closely related to the material phase, and CoxP-NC-800 nanohybrids with two phases exhibit an ultralong cycle life of 1800 cycles at a current density of 1 A g−1. And a high reversible specific capacity of 1224 mA h g−1 could be delivered after 100 cycles at a current density of 0.1 A g−1.

Graphical abstract: A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2017
Accepted
22 Apr 2017
First published
24 Apr 2017

J. Mater. Chem. A, 2017,5, 10321-10327

A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity

G. Xia, J. Su, M. Li, P. Jiang, Y. Yang and Q. Chen, J. Mater. Chem. A, 2017, 5, 10321 DOI: 10.1039/C7TA02600E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements