Embedding of Mg-doped V2O5 nanoparticles in a carbon matrix to improve their electrochemical properties for high-energy rechargeable lithium batteries†
Abstract
Hierarchical Mg-doped V2O5@carbon (HVC) spheres were fabricated using poly(methacrylic acid) (PMAA) microgel as a microreactor. The monodisperse micron-sized spheres are formed from 200 nm particles, in which primary V2O5 nanoparticles are embedded uniformly in a carbon matrix to form a mulberry-like morphology. The effect of the Mg-doping level on the electrochemical properties of the as-prepared HVC spheres was studied. Benefitting from the unique morphology and chemical pre-insertion of Mg2+ ions, the Mg0.10V2O5@C sample exhibited an excellent rate capability and stable cyclability when operated over the potential range of 1.5–4.0 V (vs. Li+/Li). The results suggest that these porous HVC spheres hold promise for use as high-energy-density cathode materials for rechargeable lithium batteries.