Issue 40, 2017

Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes

Abstract

Super flexible TCO-free FAPbI3−xBrx planar type inverted perovskite solar cells with a 17.9% power conversion efficiency under 1 sun conditions were demonstrated by introducing an APTES (3-aminopropyl triethoxysilane) adhesion promoter between a PET flexible substrate and a AuCl3-doped single-layer graphene transparent electrode (TCE). Due to the formation of covalent bonds by the APTES inter-layer, the AuCl3-GR/APTES/PET substrate had excellent flexibility, whereas the AuCl3-GR/PET substrate and the ITO/PET substrate had significant degradation of the sheet resistance after a bending test due to the break-off or delamination of AuCl3-GR from the PET substrate and the cracking of ITO. Accordingly, the perovskite solar cells constructed on the AuCl3-GR/APTES/PET TCE substrate exhibited excellent bending stability and they maintained their PCE at over 90% of the initial value after 100 bending cycles at R ≥ 4 mm.

Graphical abstract: Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes

Supplementary files

Article information

Article type
Communication
Submitted
24 Jul 2017
Accepted
27 Sep 2017
First published
27 Sep 2017

J. Mater. Chem. A, 2017,5, 21146-21152

Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes

J. H. Heo, D. H. Shin, M. H. Jang, M. L. Lee, M. G. Kang and S. H. Im, J. Mater. Chem. A, 2017, 5, 21146 DOI: 10.1039/C7TA06465A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements