Sustainable synthesis of alkaline metal oxide-mesoporous carbons via mechanochemical coordination self-assembly†
Abstract
A simple, solvent-free, solid-state self-assembly strategy for the synthesis of alkaline-metal-oxide-doped mesoporous carbons (MCs) with tunable mesopores (∼5–9 nm), high surface areas (up to 571 m2 g−1) and large pore volumes (up to 0.65 cm3 g−1) is developed via mechanochemical assembly between polyphenol–Ca2+/Mg2+ composites and F127 copolymers. Interestingly, the as-made MgO-MCs not only offer good CO2 capacities (up to 1.6 mmol g−1 at 0.15 bar and 273 K) and competitive CO2/N2 selectivities (up to 41) but also exhibit high dye adsorption capacities (541 mg g−1 for methylene blue and 435 mg g−1 for methyl orange).