Tuning of surface protein adsorption by spherical mixed charged silica brushes (MCB) with zwitterionic carboxybetaine component†
Abstract
Controlled protein adsorption and release without deformation and loss of activity under mild conditions is an essential issue for biological carriers. A spherical mixed charged silica brush (MCB), which could tune protein adsorption, has been prepared by introducing zwitterionic carboxybetaine copolymer onto the surface of silica nanoparticles for the first time. The simple surface-initiated reversible addition–fragmentation chain transfer polymerization (SI-RAFT) was applied to synthesize the MCB precursor – poly(2-(dimethylamino)ethyl methacrylate) modified silica nanoparticles (SiO2@PDMAEMA). Then, the end group in PDMAEMA was quaternized with propiolactone to obtain poly(DMAEMA-co-carboxybetaine methacrylate) modified silica nanoparticles (SiO2@poly(DMAEMA-co-CBMA)), which was denoted as MCB. In comparison, fully quaternized MCB (SiO2@PCBMA) was also prepared by a one-step strategy. Physicochemical behaviours of MCB in solution were systematically studied. The zwitterionic CBMA component endows the MCB with tunable adsorption towards both acidic and basic proteins through simple adjustment of the DMAEMA to CBMA ratio under mild conditions. This study may have great potential applications in the biomedical field, including tunable drug loading and releasing, and immobilized enzymes, etc.