Issue 31, 2017

MgAl-layered double hydroxide nanoparticles co-delivering siIDO and Trp2 peptide effectively reduce IDO expression and induce cytotoxic T-lymphocyte responses against melanoma tumor in mice

Abstract

Active immunotherapy has shown promising potential for cancer treatment. However, there still remain major challenges including induction of a potent and specific T-cell response against the endogenous antigen and retention of tumor immunity. To address these problems, we used layered double hydroxide (LDH) nanoparticles (NPs) to co-deliver tyrosinase-related protein 2 (Trp2) and indoleamine 2,3-dioxygenase siRNA (siIDO) to dendritic cells (DCs). These LDH NPs were readily taken in by DCs, and escaped from endosomes into the cytoplasm. Compared with free Trp2 peptide or siIDO, the vaccination with the LDH NPs co-delivering Trp2 and siIDO significantly inhibited tumor growth in melanoma mouse models by relieving IDO-mediated immune suppression and increasing naïve and specific T cell activation process in vivo. Thus, these LDH NPs, which have a high loading capacity for peptide or siRNA effectively protect and deliver Trp2 and siIDO, overcome the immune tolerance and strengthen T cell immunity, are potential therapeutics to enhance cancer treatment.

Graphical abstract: MgAl-layered double hydroxide nanoparticles co-delivering siIDO and Trp2 peptide effectively reduce IDO expression and induce cytotoxic T-lymphocyte responses against melanoma tumor in mice

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2017
Accepted
07 Jul 2017
First published
10 Jul 2017

J. Mater. Chem. B, 2017,5, 6266-6276

MgAl-layered double hydroxide nanoparticles co-delivering siIDO and Trp2 peptide effectively reduce IDO expression and induce cytotoxic T-lymphocyte responses against melanoma tumor in mice

L. Zhang, D. Liu, S. Wang, X. Yu, M. Ji, X. Xie, S. Liu and R. Liu, J. Mater. Chem. B, 2017, 5, 6266 DOI: 10.1039/C7TB00819H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements