Issue 40, 2017

Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states

Abstract

Surface and quantum confinement effects in one-dimensional systems such as ZnO nanowires are responsible for novel electrical properties, and can be exploited to tune electrical transport on the nanoscale. The investigation of new physical mechanisms for resistive switching can be fulfilled by studying metal/insulator/metal memristive devices that take advantage of the unique properties of one-dimensional nanoscale metal oxides. In particular, the mechanisms of resistive switching between multiple resistance states in such nanostructures can be associated with the variation of internal physical states. Here we demonstrate both experimentally and theoretically that core–shell structures based on polyacrylic acid coated ZnO nanowires exhibit a resistive switching behavior characterized by internal multiple resistance states, owing to the changes in surface states induced by redox reactions occurring at their surfaces. The introduction of a thin layer of polymer coating resulted in a resistive switching between more than two states. Specifically, the existence of two intermediate states in addition to the high and low resistance states was revealed during DC measurements in voltage sweep mode. All resistive states showed low variability over cycling. The mechanism of switching between multiple steps, as probed by density functional theory calculations, was associated with redox reactions involving species at the interface (e.g. methanal or hydroxyl groups), each characterized by a given redox potential. Therefore, multiple resistance states were induced by specific and stable threshold voltages, as shown experimentally.

Graphical abstract: Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2017
Accepted
04 Aug 2017
First published
04 Aug 2017

J. Mater. Chem. C, 2017,5, 10517-10523

Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states

S. Porro, F. Risplendi, G. Cicero, K. Bejtka, G. Milano, P. Rivolo, A. Jasmin, A. Chiolerio, C. F. Pirri and C. Ricciardi, J. Mater. Chem. C, 2017, 5, 10517 DOI: 10.1039/C7TC02383A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements