Issue 4, 2018

Microfluidic ELISA employing an enzyme substrate and product species with similar detection properties

Abstract

The requirement for an enzyme label to carry out a chemical reaction directly at the signaling region of the enzyme substrate in order to produce a large change in its detectability places a significant constraint on the scope of enzyme-linked immunosorbent assays (ELISAs). In particular, this requirement limits the kinds of enzyme label–substrate couples employable in ELISAs and prevents their independent optimization with respect to the enzyme reaction and the detectability of the enzyme reaction substrate/product. The detection limit and multiplexing capabilities of the assay are consequently restricted in addition to rendering the technique applicable to a narrow range of assay conditions/samples. Attempting to address some of these limitations, the current article describes a microfluidic ELISA method that does not require the enzyme label to act around the signaling region of the substrate molecule. A highly detectable rhodamine based substrate was synthesized to demonstrate the reported assay which upon cleavage by the enzyme label, alkaline phosphatase, transformed from a monoanionic to a monocationic species, both of which had nearly identical fluorescence properties. These species were later separated based on their charge difference using capillary zone electrophoresis in an integrated device yielding a quantitative measure for the analyte (human TNF-α) in our sample. Impressively, the noted approach not only enabled the use of a new kind of enzyme substrate for ELISAs but also allowed the detection of human TNF-α at concentrations over 54-fold lower than that possible on commercial microwell plates primarily due to the better detectability of the rhodamine dye.

Graphical abstract: Microfluidic ELISA employing an enzyme substrate and product species with similar detection properties

Associated articles

Article information

Article type
Paper
Submitted
10 Oct 2017
Accepted
26 Dec 2017
First published
04 Jan 2018

Analyst, 2018,143, 989-998

Microfluidic ELISA employing an enzyme substrate and product species with similar detection properties

B. Giri, Y. Liu, F. N. Nchocho, R. C. Corcoran and D. Dutta, Analyst, 2018, 143, 989 DOI: 10.1039/C7AN01671A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements