Targeted delivery of tungsten oxide nanoparticles for multifunctional anti-tumor therapy via macrophages†
Abstract
Tumor-associated macrophages are highly versatile effector cells that have been used to kill tumor cells. Herein, the macrophages as cell-based biocarriers are used for the targeted delivery of photothermal reagents for promoting the efficiency of killing tumor cells by activating the anti-tumor immune response and photothermal therapy (PTT). In this design, macrophages cause the phagocytosis of tumor cells and activate the anti-tumor immune response by secreting plenty of cytokines. Meanwhile, to improve the tumor-killing effect and track the collaborative therapy system in vivo, a novel nanoplatform based on tungsten oxide (W18O49, WO) nanoparticles and fluorescent dyes loaded in polylactic-co-glycolic acid (PLGA) for PTT has been successfully constructed. Subsequently, the nanoparticles are swallowed by macrophages acting as cell-based biocarriers to target the tumor and promote solid tumor ablation in vivo in animal experiments. This system is expected to bring a huge application potential in the visually guided dual-modal therapeutic platform for tumor targeting therapy in vivo.