Issue 11, 2018

Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy

Abstract

Photodynamic therapy (PDT) as an alternative choice of cancer treatment method has attracted increasing attention in the past few decades. A sufficient amount of oxygen is essential for the production of singlet oxygen (1O2) in successful PDT; however, hypoxia is a typical hallmark of cancer, which is one of the most important limitation factors of PDT. To overcome the hypoxic tumour microenvironment and achieve highly efficient photodynamic cancer therapy, herein, a photosensitizer Ce6-loaded fluorinated polymeric micelle (Ce6-PFOC-PEI-M) was constructed via the self-assembly of an amphiphilic polymer prepared from perfluorooctanoic acid and branched polyethyleneimine (10 kDa). The introduction of perfluoroalkyl groups in the polymeric micelle Ce6-PFOC-PEI-M retained the oxygen-carrying capacity similar to perfluorocarbon, increased the oxygen level and overcame the hypoxia in C6 glioma cells under oxygen-deficient conditions. As a control, Ce6-OC-PEI-M without a perfluoroalkyl group could not increase the oxygen level in C6 glioma cells under the same conditions. With laser irradiation, Ce6-PFOC-PEI-M generated much more reactive oxygen species (ROS) in C6 glioma cells than Ce6-OC-PEI-M, leading to a higher phototoxicity in vitro and photodynamic tumour growth inhibition in vivo than Ce6-OC-PEI-M. Furthermore, there were no differences in the contents of Ce6 in tumour tissue between Ce6-PFOC-PEI-M and Ce6-OC-PEI-M. The higher efficacy of Ce6-PFOC-PEI-M in PDT is ascribed to its oxygen-carrying ability rather than higher content of Ce6 in the tumour. The presented fluorinated polymeric micelle could provide a new platform in the delivery of various photosensitizers and has great potential to improve the efficacy of PDT cancer therapy.

Graphical abstract: Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy

Article information

Article type
Paper
Submitted
23 Jul 2018
Accepted
21 Sep 2018
First published
26 Sep 2018

Biomater. Sci., 2018,6, 3096-3107

Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy

Q. Wang, J. Li, H. Yu, K. Deng, W. Zhou, C. Wang, Y. Zhang, K. Li, R. Zhuo and S. Huang, Biomater. Sci., 2018, 6, 3096 DOI: 10.1039/C8BM00852C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements