Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy
Abstract
Photodynamic therapy (PDT) as an alternative choice of cancer treatment method has attracted increasing attention in the past few decades. A sufficient amount of oxygen is essential for the production of singlet oxygen (1O2) in successful PDT; however, hypoxia is a typical hallmark of cancer, which is one of the most important limitation factors of PDT. To overcome the hypoxic tumour microenvironment and achieve highly efficient photodynamic cancer therapy, herein, a photosensitizer Ce6-loaded fluorinated polymeric micelle (Ce6-PFOC-PEI-M) was constructed via the self-assembly of an amphiphilic polymer prepared from perfluorooctanoic acid and branched polyethyleneimine (10 kDa). The introduction of perfluoroalkyl groups in the polymeric micelle Ce6-PFOC-PEI-M retained the oxygen-carrying capacity similar to perfluorocarbon, increased the oxygen level and overcame the hypoxia in C6 glioma cells under oxygen-deficient conditions. As a control, Ce6-OC-PEI-M without a perfluoroalkyl group could not increase the oxygen level in C6 glioma cells under the same conditions. With laser irradiation, Ce6-PFOC-PEI-M generated much more reactive oxygen species (ROS) in C6 glioma cells than Ce6-OC-PEI-M, leading to a higher phototoxicity in vitro and photodynamic tumour growth inhibition in vivo than Ce6-OC-PEI-M. Furthermore, there were no differences in the contents of Ce6 in tumour tissue between Ce6-PFOC-PEI-M and Ce6-OC-PEI-M. The higher efficacy of Ce6-PFOC-PEI-M in PDT is ascribed to its oxygen-carrying ability rather than higher content of Ce6 in the tumour. The presented fluorinated polymeric micelle could provide a new platform in the delivery of various photosensitizers and has great potential to improve the efficacy of PDT cancer therapy.