Issue 11, 2018

Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration

Abstract

Xenograft, namely bone-derived biological apatite (BAp), is widely recognized as a favorable biomaterial in bone tissue engineering owing to its biodegradability, biocompatibility, and osteoconductive properties. Substitutions of endogenous trace ions are thought to improve the osteogenic capacity of xenograft compared with synthetic hydroxyapatite (HAp). In order to modify the physicochemical and biological properties of apatite, different approaches to induce trace ion incorporation have been widely considered. In this study, we demonstrated that the incorporation of fluoride ions into porcine bone-derived biological apatite (pBAp) contributes to altered crystal morphology of the apatite, the sustained release of fluoride, and the in situ release of endogenous trace ions (e.g., magnesium and calcium) into the peripheral tissue microenvironment. This ionic balanced perimaterial microenvironment not only led to superior proliferation and osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs), but also accelerated new bone formation of the calvarial defect on a rat model via the activation of Wnt/β-catenin signaling. These promising observations may be attributed to the controlled release of endogenous trace ions from the xenograft to the peripheral tissue microenvironment driven by fluoride ion incorporation. Lastly, this study may provide a new insight to strengthen the osteogenicity of xenografts for clinical applications in the future.

Graphical abstract: Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2018
Accepted
07 Sep 2018
First published
11 Sep 2018

Biomater. Sci., 2018,6, 2951-2964

Contribution of the in situ release of endogenous cations from xenograft bone driven by fluoride incorporation toward enhanced bone regeneration

W. Qiao, R. Liu, Z. Li, X. Luo, B. Huang, Q. Liu, Z. Chen, J. K. H. Tsoi, Y. Su, K. M. C. Cheung, J. P. Matinlinna, K. W. K. Yeung and Z. Chen, Biomater. Sci., 2018, 6, 2951 DOI: 10.1039/C8BM00910D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements