Issue 4, 2018

The effect of amorphous TiO2 in P25 on dye-sensitized solar cell performance

Abstract

P25 is one of the most widely used forms of titanium(IV) oxide (TiO2), routinely utilised in dye-sensitised solar cells (DSCs), where it is often employed as a control, in spite of its poorly defined nature and the typically low device efficiency (or possibly because of this). Work by Park in 2000 and later by Lin et al. suggests that the rutile component might not be to blame for this, as has often been claimed. Recently it has been observed that P25 has quite a sizable amorphous content. A method to selectively remove this non-crystalline material has been developed, allowing for scrutiny of the role this amorphous material plays. Here we compare hydrothermally treated P25 (H-P25) with the as-received material, realizing solar-to-electric conversion efficiencies of 5.3% and 3.2% respectively. More importantly, this reveals important information about the detrimental effect of amorphous TiO2 on DSC performance, with broader implications, as most researchers do not actively examine their synthesized materials for the presence of an amorphous component.

Graphical abstract: The effect of amorphous TiO2 in P25 on dye-sensitized solar cell performance

Supplementary files

Article information

Article type
Communication
Submitted
28 Sep 2017
Accepted
30 Nov 2017
First published
01 Dec 2017

Chem. Commun., 2018,54, 381-384

The effect of amorphous TiO2 in P25 on dye-sensitized solar cell performance

K. Al-Attafi, A. Nattestad, Q. Wu, Y. Ide, Y. Yamauchi, S. X. Dou and J. H. Kim, Chem. Commun., 2018, 54, 381 DOI: 10.1039/C7CC07559F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements