Genetic encoding of 2-aryl-5-carboxytetrazole-based protein photo-cross-linkers†
Abstract
Three γ-heteroatom-substituted N-methylpyrroletetrazole-lysines (mPyTXKs) were synthesized and subsequently incorporated into proteins site-specifically via genetic code expansion. The γ-seleno-substituted derivative, mPyTSeK, showed excellent incorporation efficiency in Escherichia coli and allowed site-selective photo-cross-linking of the GST dimer. Furthermore, the mPyTSeK-cross-linked GST dimer can be cleaved under mild oxidative conditions. The incorporation of mPyTXKs into proteins in mammalian cells was also demonstrated. Lastly, the recombinantly expressed mPyTSeK-encoded Grb2 was shown to covalently capture its interaction partner, EGFR, in mammalian cell lysate, which was subsequently released after treatment with H2O2.