Issue 11, 2018

Spectroscopy and dynamics of dehydrobenzo[12]annulene derivatives possessing peripheral carboxyphenyl groups: theory and experiment

Abstract

In this work, we report on the results of theoretical and experimental studies of a series of dehydrobenzoannulene (DBA) derivatives (Nu-T12 [5,6,11,12,17,18-hexadehydrotribenzo[a,e,i]cyclododecene], T12-COOMe [5,6,11,12,17,18-hexadehydro-2,3,8,9,14,15-hexakis(4-methoxycarbonylphenyl)tribenzo[a,e,i]cyclododecene] and T12-COOH [5,6,11,12,17,18-hexadehydro-2,3,8,9,14,15-hexakis(4-carboxyphenyl)tribenzo[a,e,i]cyclododecene]) in N,N′-dimethylformamide (DMF) solutions. The theoretical and experimental findings show that the S0 → S1 transition of these molecules is forbidden. Time-resolved spectroscopy measurements determined a lifetime of ∼100 ps of the transition from the first electronical excited (S1) state. These molecules also emit through charge transfer (CT) species, with lifetimes of ∼1 and ∼4.5 ns. In addition to this, Nu-T12 and T12-COOMe in DMF solutions exhibit an emission from their triplet state in 35 and 24.5 ns, respectively. However, T12-COOH strongly interacts through H-bonds with DMF molecules, leading to the formation of new species having a proton-transferred character, whose emission spectrum is red-shifted and its lifetime from the S1 state is ∼25 ns. Using nanosecond (ns) flash photolysis, we also observed the presence of non-emissive triplet states, in addition to the emissive ones. The theoretical calculations suggest that this non-radiative triplet state originates from a CT structure of the emissive triplet one. The new findings presented here elucidate the photobehaviour of three DBA derivatives of relevance to crystalline Hydrogen-Bonded Organic Framework (HOF) materials. The photophysical data provide a strong basis to explore and to better understand the photodynamics of HOF crystals.

Graphical abstract: Spectroscopy and dynamics of dehydrobenzo[12]annulene derivatives possessing peripheral carboxyphenyl groups: theory and experiment

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2017
Accepted
13 Dec 2017
First published
13 Dec 2017

Phys. Chem. Chem. Phys., 2018,20, 7415-7427

Spectroscopy and dynamics of dehydrobenzo[12]annulene derivatives possessing peripheral carboxyphenyl groups: theory and experiment

E. Gomez, M. Gutiérrez, M. Moreno, I. Hisaki, S. Nakagawa and A. Douhal, Phys. Chem. Chem. Phys., 2018, 20, 7415 DOI: 10.1039/C7CP06819K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements