Issue 13, 2018

Insights into exfoliation possibility of MAX phases to MXenes

Abstract

Chemical exfoliation of MAX phases into two-dimensional (2D) MXenes can be considered as a major breakthrough in the synthesis of novel 2D systems. To gain insight into the exfoliation possibility of MAX phases and to identify which MAX phases are promising candidates for successful exfoliation into 2D MXenes, we perform extensive electronic structure and phonon calculations, and determine the force constants, bond strengths, and static exfoliation energies of MAX phases to MXenes for 82 different experimentally synthesized crystalline MAX phases. Our results show a clear correlation between the force constants and the bond strengths. As the total force constant of an “A” atom contributed from the neighboring atoms is smaller, the exfoliation energy becomes smaller, thus making exfoliation easier. We propose 37 MAX phases for successful exfoliation into 2D Ti2C, Ti3C2, Ti4C3, Ti5C4, Ti2N, Zr2C, Hf2C, V2C, V3C2, V4C3, Nb2C, Nb5C4, Ta2C, Ta5C4, Cr2C, Cr2N, and Mo2C MXenes. In addition, we explore the effect of charge injection on MAX phases. We find that the injected charges, both electrons and holes, are mainly received by the transition metals. This is due to the electronic property of MAX phases that the states near the Fermi energy are mainly dominated by d orbitals of the transition metals. For negatively charged MAX phases, the electrons injected cause swelling of the structure and elongation of the bond distances along the c axis, which hence weakens the binding. For positively charged MAX phases, on the other hand, the bonds become shorter and stronger. Therefore, we predict that the electron injection by electrochemistry or gating techniques can significantly facilitate the exfoliation possibility of MAX phases to 2D MXenes.

Graphical abstract: Insights into exfoliation possibility of MAX phases to MXenes

Supplementary files

Article information

Article type
Paper
Submitted
27 Dec 2017
Accepted
01 Mar 2018
First published
06 Mar 2018

Phys. Chem. Chem. Phys., 2018,20, 8579-8592

Insights into exfoliation possibility of MAX phases to MXenes

M. Khazaei, A. Ranjbar, K. Esfarjani, D. Bogdanovski, R. Dronskowski and S. Yunoki, Phys. Chem. Chem. Phys., 2018, 20, 8579 DOI: 10.1039/C7CP08645H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements