Issue 33, 2018

Uptake and accommodation of water clusters by adamantane clusters in helium droplets: interplay between magic number clusters

Abstract

We report an experimental study of water clusters as guests in interactions with clusters of adamantane (Ad) as hosts that occur in doped helium droplets at extremely low temperatures. Separate experiments with pure water as dopant showed ready formation of a distribution of water clusters (H2O)mH+ that peaks at m = 11 and extends beyond m = 100 with local maxima at m = 4, 11, 21, 28 and 30 with (H2O)21H+ being the most anomalous and showing the greatest stability with respect to clusters immediately adjacent in water content. When adamantane is also added as a dopant, extensive hydration is seen in the formation of water/adamantane clusters, (H2O)mAdn+; magic number clusters (H2O)21Adn+ are seen for all the adamantane clusters. Other magic numbers for water clusters attached to adamantane, (H2O)mAdn+, are as for pristine protonated water, with m = 28 and m = 30. The icosahedral shell closure of pure adamantane at n = 13 and 19 appears to be preserved with (H2O)21 replacing one adamantane. (H2O)21Ad12+ and (H2O)21Ad18+ stand out in intensity and demonstrate the interplay of magic number water clusters with magic number adamantane clusters, observed perhaps for the first time in gas-phase cluster chemistry. There was no clear evidence for the formation of clathrate hydrates in which adamantane is trapped within structured water.

Graphical abstract: Uptake and accommodation of water clusters by adamantane clusters in helium droplets: interplay between magic number clusters

Article information

Article type
Paper
Submitted
07 Apr 2018
Accepted
14 Jul 2018
First published
10 Aug 2018
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2018,20, 21573-21579

Uptake and accommodation of water clusters by adamantane clusters in helium droplets: interplay between magic number clusters

L. Kranabetter, P. Martini, N. Gitzl, M. Kuhn, F. Saleem, B. Rasul, M. Mahmoodi Darian, E. Jabbour Al Maalouf, I. Sukuba, A. Kaiser, M. Goulart, D. K. Böhme and P. Scheier, Phys. Chem. Chem. Phys., 2018, 20, 21573 DOI: 10.1039/C8CP02207K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements