A theoretical insight into an isentropic strategy for enhancing magnetoelectric coupling of organic multiferroics†
Abstract
The cross-coupling between magnetic and ferroelectric orders in spin-driven organic multiferroics provides great potential for realizing multi-state logic memory. Creating strong magnetoelectric coupling around room-temperature is the key to eliminate the main roadblock for practical application. Herein, quantum correlation controlled means are employed to tune the transition temperature TC = 300 K, as the optimal operating temperature. After that, based on the magnetocaloric or electrocaloric effect, a temperature mediated mechanism is proposed to enhance magnetoelectric coupling within an isentropic rather than an isothermal process. Furthermore, a moderate magnetic field combined with a relatively weak electric field can jointly control and dramatically enhance the isentropic magnetoelectric coupling around room-temperature.