Confinement-driven radical change in a sequence of rotator phases: a study on n-octacosane
Abstract
Rotator-phase forming n-alkanes have been studied extensively in both their bulk state and in nanoconfinement. While some alkanes maintain their bulk-state rotator phases in nanoconfinement albeit with increased disorder, there are others exhibiting new rotator phases upon confinement. We present here a temperature dependent X-ray diffraction (XRD) and differential scanning calorimetric (DSC) study on n-octacosane (C28H58), which almost completely loses its bulk state RIV phase and undergoes complete disappearance of its RIII phase. In their place, when confined in cylindrical anodized alumina nanopores, a phase highly resembling the hexatic mesophase is formed at a higher temperature and the RI rotator phase at a lower temperature. The effects of finite size, interfacial interactions with the host matrix and alkyl chain flexibility are used to provide an explanation for such unexpected behaviour.