Spin polarization and spin channel reversal in graphitic carbon nitrides on top of an α-Fe2O3(0001) surface†‡
Abstract
Inducing the spin-dependent characteristics in two-dimensional (2D) materials by magnetic proximity effects is a recent targeted route for 2D spintronic devices. Here, we report the spin-dependent electronic properties of graphitic carbon nitrides (g-C2N, g-C3N and g-C4N3) on top of α-Fe2O3(0001) by first-principles calculations. The different terminations of α-Fe2O3(0001) can switch the conductivity of g-C2N from the n- to the p-type. In particular, the O- and single Fe-terminated interfaces show a half-metallic feature in g-C2N, which originates from the charge redistribution driven by work function difference and interfacial interaction. Additionally, the O-terminated interface shows stable physical adsorption, which leads to spin polarization in g-C3N and spin channel reversal in g-C4N3. These results strongly reveal that this novel system is a candidate for future graphitic carbon nitride-based spintronic devices.
- This article is part of the themed collection: 2018 PCCP HOT Articles