Issue 36, 2018

Pore-filling contamination in metal–organic frameworks

Abstract

Tuneable pore sizes, ordered crystal structures, and large surface areas are some of the main attractive features of metal–organic frameworks (MOFs). To fully understand the structure–property relationships of these materials, accurate characterisation of their structural features is essential. The surface areas of MOFs are routinely estimated from the physical adsorption of gases. By applying the Brunauer, Emmett & Teller (BET) theory to an adsorption isotherm, the surface area is calculated from the amount of gas that forms a monolayer on the pore surface. While this technique is used ubiquitously within the porous solid community, its accuracy can be greatly affected by pore-filling contamination. This process causes an overestimation of the BET surface area from the overlap of surface and pore-filling adsorption as molecules that are not in contact with the surface are erroneously included into the surface area calculation. Experimentally, it is rather challenging to examine the effects of pore-filling contamination, which typically rely on accurate atomistic simulations to provide insight. In this work, we employ grand canonical Monte Carlo simulations and other theoretical approaches to assess the impact of pore-filling contamination on MOF surface areas. With a focus on the rht and nbo topologies, we show how experimental studies that suggest MOF surface areas can be increased by replacing phenyl rings for alkynes are largely influenced by the pore-filling contamination effect.

Graphical abstract: Pore-filling contamination in metal–organic frameworks

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2018
Accepted
29 Aug 2018
First published
29 Aug 2018

Phys. Chem. Chem. Phys., 2018,20, 23616-23624

Pore-filling contamination in metal–organic frameworks

J. Glover and E. Besley, Phys. Chem. Chem. Phys., 2018, 20, 23616 DOI: 10.1039/C8CP04769C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements