Issue 46, 2018

Adsorption and oxidation of propane and cyclopropane on IrO2(110)

Abstract

We investigated the adsorption and oxidation of n-propane and cyclopropane (C3H8 and c-C3H6) on the IrO2(110) surface using temperature programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. We find that the activation of both C3H8 and c-C3H6 is facile on IrO2(110) at low temperature, and that the dissociated alkanes oxidize during TPRS to produce CO, CO2 and H2O above ∼400 K. Propane conversion to propylene is negligible during TPRS for the conditions studied. Our results show that the maximum yield of alkane that oxidizes during TPRS is higher for c-C3H6 compared with C3H8 (∼0.30 vs. 0.18 monolayer) and that pre-hydrogenation of the surface suppresses c-C3H6 oxidation to a lesser extent than C3H8. Consistent with the experimental results, DFT predicts that C3H8 and c-C3H6 form σ-complexes on IrO2(110) and that C–H bond activation of the complexes as well as subsequent dehydrogenation are highly facile via H-transfer to Obr atoms (bridging O-atoms). Our calculations predict that propane conversion to gaseous propylene is kinetically disfavored on IrO2(110) because HObr recombination makes Obr atoms available to promote further dehydrogenation at lower temperatures than those needed for the adsorbed C3H6 intermediate to desorb as propylene. We also present evidence that that the ability for c-C3H6 to activate via ring-opening is responsible for cyclopropane attaining higher reaction yields during TPRS and exhibiting a weaker sensitivity to surface pre-hydrogenation compared with n-propane.

Graphical abstract: Adsorption and oxidation of propane and cyclopropane on IrO2(110)

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2018
Accepted
08 Nov 2018
First published
08 Nov 2018

Phys. Chem. Chem. Phys., 2018,20, 29264-29273

Author version available

Adsorption and oxidation of propane and cyclopropane on IrO2(110)

R. Martin, M. Kim, A. Franklin, Y. Bian, A. Asthagiri and J. F. Weaver, Phys. Chem. Chem. Phys., 2018, 20, 29264 DOI: 10.1039/C8CP06125D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements