Issue 22, 2018

Site-selective C–H bond carbonylation with CO2 and cobalt-catalysis

Abstract

Utilization of anthropogenic greenhouse gas CO2 for catalytic C–C bond formation via conversion to essentially valuable C1 synthons like CO is very challenging. The requirement of an efficient catalyst that has the ability to convert CO2 into CO and activate inert C–H bonds is the bottleneck. We herein demonstrate a tandem approach accomplished in a two-chamber system for efficient fluoride-mediated generation of CO from CO2 using disilane as a deoxygenating reagent and utilization of the in situ-produced CO gas for C–H bond carbonylation using earth-abundant cobalt catalysts. The ease of handling CO2 gas at atmospheric pressure allows us to prepare 13C labelled compounds which are otherwise difficult to achieve. The procedure developed makes it possible to utilize CO2 as a CO source, which can be widely applied as a C1 synthon that can be incorporated between C–H and N–H bonds of aromatic, hetero-aromatic and aliphatic carboxamides for the synthesis of various cyclic imides including spirocycles in a site-selective fashion. The late-stage derivatization of a well-known angiotensin receptor blocker (ARB), Telmisartan, and a well-known drug for very low-density lipoproteins (VLDLs), Gemfibrozil, is demonstrated. Further, to showcase the generality of the reaction, various pharmacologically important and privileged scaffolds like xanthone, coumarin and isatin have been synthesized with CO2 under atmospheric pressure.

Graphical abstract: Site-selective C–H bond carbonylation with CO2 and cobalt-catalysis

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2018
Accepted
22 Oct 2018
First published
23 Oct 2018

Catal. Sci. Technol., 2018,8, 5963-5969

Site-selective C–H bond carbonylation with CO2 and cobalt-catalysis

N. Barsu, D. Kalsi and B. Sundararaju, Catal. Sci. Technol., 2018, 8, 5963 DOI: 10.1039/C8CY02060D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements