Issue 47, 2018

Spin-crossover compounds based on iron(ii) complexes of 2,6-bis(pyrazol-1-yl)pyridine (bpp) functionalized with carboxylic acid and ethyl carboxylic acid

Abstract

Four new salts of the iron(II) complex of the 2,6-bis(pyrazol-1-yl)pyridine ligand functionalized with a carboxylic acid group (bppCOOH) of formulas [Fe(bppCOOH)2](BF4)2 (1(BF4)2), [Fe(bppCOOH)2](CF3SO3)2·yMe2CO (1(CF3SO3)2·yMe2CO), [Fe(bppCOOH)2](AsF6)2·yMe2CO (1(AsF6)2·yMe2CO) and [Fe(bppCOOH)2](SbF6)2·yMe2CO (1(SbF6)2·yMe2CO) have been prepared and characterized together with a more complete structural and photomagnetic characterization of the previously reported [Fe(bppCOOH)2](ClO4)2 (1(ClO4)2). Furthermore, the iron(II) complex of the ethyl ester derivative of bppCOOH (bppCOOEt) has been prepared and characterized (compound [Fe(bppCOOEt)2](ClO4)2·yMe2CO, 2(ClO4)2·yMe2CO). Isostructural 1(BF4)2 and 1(ClO4)2 show an abrupt and reversible spin transition with a much lower T1/2 for the BF4 salt. CF3SO3, SbF6 and AsF6 counteranions and the bppCOOEt ligand lead to the incorporation of solvent molecules in the structures, which play an important role in the spin-crossover properties of these compounds. In the case of 1(CF3SO3)2·yMe2CO, a reversible spin transition is obtained after desolvation. All these compounds show a LIESST effect.

Graphical abstract: Spin-crossover compounds based on iron(ii) complexes of 2,6-bis(pyrazol-1-yl)pyridine (bpp) functionalized with carboxylic acid and ethyl carboxylic acid

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2018
Accepted
06 Nov 2018
First published
06 Nov 2018

Dalton Trans., 2018,47, 16958-16968

Spin-crossover compounds based on iron(II) complexes of 2,6-bis(pyrazol-1-yl)pyridine (bpp) functionalized with carboxylic acid and ethyl carboxylic acid

V. García-López, M. Palacios-Corella, A. Abhervé, I. Pellicer-Carreño, C. Desplanches, M. Clemente-León and E. Coronado, Dalton Trans., 2018, 47, 16958 DOI: 10.1039/C8DT03511C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements