Issue 11, 2018

A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life

Abstract

Li-Ion batteries (LIBs) are approaching their energy limits imposed by their intercalation chemistry nature. As alternatives, multivalent (MV) chemistries bring both promises and challenges, with the main obstacle being the sluggish diffusion of MV-cations due to their strong electrostatic interaction with host lattices. In this work, we demonstrated that polyanion based robust crystal architecture could enable ultrafast and reversible Zn2+-intercalation and de-intercalation at a high working voltage. The nominal bivalence of Zn2+ was successfully delocalized by multiple atoms through the p–d hybridization between the V-d and O-p orbitals; hence the inserted Zn2+ only bears an effective charge of 1.336, rendering its high mobility. The novel aqueous rechargeable 1.7 V Zn/LiV2(PO4)3 cell based on such a mechanism delivers a high power density (8000 W kg−1 at 60C) comparable to supercapacitors, and a high energy density (218 W h kg−1 at 1C) close to LIBs, with an extraordinarily long cycle life of 4000 cycles. All of these parameters far exceed those of Zn batteries reported so far. The cell-level volumetric and specific energy densities of the Zn/LiV2(PO4)3 cell are 320 W h L−1 and 150 W h kg−1, respectively, which are even better than those of first-generation LIBs. Combined with the intrinsic safety of its aqueous chemistry and its wide working temperature range, this cell makes a strong candidate for automotive applications.

Graphical abstract: A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life

Supplementary files

Article information

Article type
Communication
Submitted
29 Jun 2018
Accepted
03 Oct 2018
First published
03 Oct 2018

Energy Environ. Sci., 2018,11, 3168-3175

Author version available

A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life

F. Wang, E. Hu, W. Sun, T. Gao, X. Ji, X. Fan, F. Han, X. Yang, K. Xu and C. Wang, Energy Environ. Sci., 2018, 11, 3168 DOI: 10.1039/C8EE01883A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements