Exploration of the treatment of fish-canning industry effluents by aqueous-phase reforming using Pt/C catalysts†
Abstract
In the current work, an exploratory study on the application of catalytic aqueous phase reforming (APR) to the treatment of fish-canning wastewater was performed for the first time. Pt/C (3%, w) catalysts were supported on different commercial carbon supports (two activated carbons and a carbon black) and tested in the APR of tuna-cooking wastewater. The effect of the supports and the reaction systems (batch vs. semi-continuous) on the performance of the catalysts was tested. The stability of the catalysts upon 3 successive reuse cycles was checked. TOC and COD removal ranged within 45–60%, which was ascribed to adsorption on the supports, hydrothermal carbonization and APR. The percentage of valuable gases (H2 and alkanes) reached up to 18% of the gas production showing the potential of APR for the valorization and treatment of wastewater. The production of gases is affected by the high chloride, acetate and phosphate concentrations, which may provoke catalyst deactivation. The use of a catalyst with a basic support significantly increased the production of gases and the H2 percentage in the gas fraction. Gas production was higher in semi-continuous compared to batch operation, maybe because the withdrawn gas displaces the reaction towards the products. The percentage of alkanes in the gas phase decreased upon successive catalyst reuse cycles at the expense of H2, which is probably due to sintering of Pt nanoparticles with the corresponding decrease of the number of low-coordinated Pt sites promoting methanation reactions.