Hypolipidemic effect and protection ability of liver-kidney functions of melanin from Lachnum YM226 in high-fat diet fed mice
Abstract
In the present study, we investigated the hypolipidemic properties of melanin from Lachnum YM226 (LM) in high-fat diet induced hyperlipidemic mice. After the hyperlipidemic model was established, mice were randomly divided into six groups, as follows: normal control group (NC), hyperlipidemic control group (HC), positive control group (7 mg kg−1 d−1 simvastatin) (PC) and LM groups (50, 100 and 200 mg kg−1 d−1 denoted as LM-50, LM-100 and LM-200, respectively). Subsequently, the body weight, organ indices, lipid metabolism, antioxidant properties and liver-kidney functions of the mice were examined. Moreover, the activities of lipoprotein metabolism enzymes in serum and liver tissue were examined to study the feasible mechanism. The results imply that LM could effectively reduce body weight, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and atherogenic index (AI), and increase high density lipoprotein cholesterol (HDL-C). Moreover, treatment with LM also increased the antioxidant enzymes activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) and reduced malondialdehyde (MDA) content relative to the HC group. In addition, the liver and kidney damage indices such as alanine aminotransferase (ALT), aspartate aminotransaminase (AST), alkaline phosphatase (ALP), creatinine (CRE), blood urea nitrogen (BUN) and uric acid were lowered. LM administration also significantly corrected disturbances of liver-kidney functions with no fatty deposits in the liver, resulting in a protective effect against renal histological alteration. The hypolipidemic effect occurred partly due to the regulation of hepatic lipase (HL) and lipoprotein lipase (LPL) in serum and liver to markedly decrease TG. This confirms the important role of LM in the prevention of hyperlipidemia.