Issue 4, 2018

Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying

Abstract

Porous metal–organic frameworks (MOFs) are attracting great attention from industry, thanks to their myriad potential applications in areas such as catalysis and gas storage. Zr-MOFs (also known as UiO-type MOFs) are especially promising, owing to their large surface areas, high chemical versatility and remarkable hydrothermal, chemical and thermal stabilities. However, among the challenges currently precluding the industrial exploitation of MOFs is the lack of green methods for their synthesis. Herein we describe a continuous-flow spray-drying method for the simultaneous synthesis and shaping of spherical MOF microbeads in a mixture of water and acetic acid. We used this approach to build two archetypical Zr-MOFs: UiO-66-NH2 and Zr-fumarate. By tuning the concentration of acetic acid in water, we were able to produce, by a scalable process, UiO-66-NH2 and Zr-fumarate beads with SBET and water-sorption values comparable to the literature values obtained with other methods.

Graphical abstract: Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying

Supplementary files

Article information

Article type
Paper
Submitted
18 Oct 2017
Accepted
10 Jan 2018
First published
11 Jan 2018

Green Chem., 2018,20, 873-878

Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying

C. Avci-Camur, J. Troyano, J. Pérez-Carvajal, A. Legrand, D. Farrusseng, I. Imaz and D. Maspoch, Green Chem., 2018, 20, 873 DOI: 10.1039/C7GC03132G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements