Issue 18, 2018

Integrated diesel production from lignocellulosic sugars via oleaginous yeast

Abstract

Oleaginous microbes are promising platform strains for the production of renewable diesel and fatty-acid derived chemicals given their innate capacity to produce high lipid yields from lignocellulose-derived sugars. Substantial efforts have been conducted to engineer model oleaginous yeasts primarily on model feedstocks, but to enable lipid production from biomass, judicious strain selection based on phenotypes beneficial for processing, performance on realistic feedstocks, and process integration aspects from sugars to fuels should be examined holistically. To that end, here we report the bench-scale production of diesel blendstock using a biological-catalytic hybrid process based on oleaginous yeast. This work includes flask screening of 31 oleaginous yeast strains, evaluated based on baseline lipid profiles and sugar consumption with corn stover hydrolysate. Three strains were down-selected for bioreactor performance evaluation. The cultivation results reveal that Cryptococcus curvatus ATCC 20509 and Rhodosporodium toruloides DSM-4444 exhibit equivalent fatty acid methyl ester (FAME) yield (0.24 g g−1), whereas the highest overall FAME productivity (0.22 g L−1 h−1) was obtained with C. curvatus, and R. toruloides displayed the highest final FAME titer (23.3 g L−1). Time-resolved lipid profiling (including neutral and polar lipid classing) demonstrated triacylglycerol accumulation as the predominant lipid class in all strains. When evaluating tolerance mechanisms to inhibitory compounds, all strains could reduce and oxidize 5-(hydroxymethyl)furfural, illustrating parallel detoxification mechanisms. The R. toruloides strain was also capable of growth on four aromatic compounds as a sole carbon source, suggesting its use as a strain for simultaneous sugar and lignin conversion. Lipids from R. toruloides were recovered using a mild acid treatment and extraction, hydrogenated, and isomerized to produce a renewable diesel blendstock. The blendstock exhibited a cloud point of −14.5 °C and simulated distillation showed that approximately 75% of the product was in the diesel range with a T90 consistent with no. 2 diesel fuel. Taken together, these results demonstrate an integrated process for renewable diesel production, identify oleaginous strains for further development, and highlight opportunities for improvements to an oleaginous microbial platform for the production of renewable diesel blendstock.

Graphical abstract: Integrated diesel production from lignocellulosic sugars via oleaginous yeast

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2018
Accepted
15 Aug 2018
First published
20 Aug 2018

Green Chem., 2018,20, 4349-4365

Author version available

Integrated diesel production from lignocellulosic sugars via oleaginous yeast

V. Sànchez i Nogué, B. A. Black, J. S. Kruger, C. A. Singer, K. J. Ramirez, M. L. Reed, N. S. Cleveland, E. R. Singer, X. Yi, R. Y. Yeap, J. G. Linger and G. T. Beckham, Green Chem., 2018, 20, 4349 DOI: 10.1039/C8GC01905C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements