Issue 6, 2018

Accurate experimental determination of gallium K- and L3-shell XRF fundamental parameters

Abstract

The fluorescence yield of the K- and L3-shell of gallium was determined using the radiometrically calibrated (reference-free) X-ray fluorescence instrumentation at the BESSY II synchrotron radiation facility. Simultaneous transmission and fluorescence signals from GaSe foils were obtained, resulting in K- and L3-shell fluorescence yield values (ωGa,K = 0.515 ± 0.019, ωGa,L3 = 0.013 ± 0.001) consistent with existing database values. For the first time, these standard combined uncertainties are obtained from a properly constructed Uncertainty budget. These K-shell fluorescence yield values support Bambynek's semi-empirical compilation from 1972: these and other measurements yield a combined recommended value of ωGa,K = 0.514 ± 0.010. Using the measured fluorescence yields together with production yields from reference Ga-implanted samples where the quantity of implanted Ga was determined at 1.3% traceable accuracy by Rutherford backscattering spectrometry, the K-shell and L3-subshell photoionization cross sections at selected incident photon energies were also determined and compared critically with the standard databases.

Graphical abstract: Accurate experimental determination of gallium K- and L3-shell XRF fundamental parameters

Article information

Article type
Paper
Submitted
14 Feb 2018
Accepted
01 May 2018
First published
07 May 2018

J. Anal. At. Spectrom., 2018,33, 1003-1013

Accurate experimental determination of gallium K- and L3-shell XRF fundamental parameters

R. Unterumsberger, P. Hönicke, J. L. Colaux, C. Jeynes, M. Wansleben, M. Müller and B. Beckhoff, J. Anal. At. Spectrom., 2018, 33, 1003 DOI: 10.1039/C8JA00046H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements