Issue 8, 2018

3D-printed Quake-style microvalves and micropumps

Abstract

Here we demonstrate a 3D-printable microvalve that is transparent, built with a biocompatible resin, and has a simple architecture that can be easily scaled up into large arrays. The open-at-rest valve design is derived from Quake's PDMS valve design. We used a stereolithographic (SL) 3D printer to print a thin (25 or 10 μm-thick) membrane (1200 or 500 μm-diam.) that is pneumatically pressed (∼3–6 psi) over a bowl-shaped seat to close the valve. We used poly(ethylene diacrylate) (MW = 258) (PEG-DA-258) as the resin because it yields transparent cytocompatible prints. Although the flexibility of PEG-DA-258 is inferior to that of other microvalve fabrication materials such as PDMS, the valve benefits from the bowl design and the membrane's high restoring force since it does not need a negative pressure to re-open. We also 3D-printed a micropump by combining three Quake-style valves in series. The micropump only requires positive pressure for its operation and profits from the fast return to the valves' open states. Moreover, we printed a 64-valve array constructed with 500 μm-diam. valves to demonstrate the reliability and scalability of the valves. Overall, we demonstrate the 3D-printing of compact microvalves and micropumps using a process that precludes the need for specialized, time-consuming labor.

Graphical abstract: 3D-printed Quake-style microvalves and micropumps

Supplementary files

Article information

Article type
Paper
Submitted
01 Jan 2018
Accepted
09 Mar 2018
First published
09 Mar 2018

Lab Chip, 2018,18, 1207-1214

3D-printed Quake-style microvalves and micropumps

Y. Lee, N. Bhattacharjee and A. Folch, Lab Chip, 2018, 18, 1207 DOI: 10.1039/C8LC00001H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements