Ion sensing with thread-based potentiometric electrodes†
Abstract
Potentiometric sensing of ions with ion-selective electrodes (ISEs) is a powerful technique for selective and sensitive measurement of ions in complex matrices. The application of ISEs is generally limited to laboratory settings, because most commercially available ISEs and reference electrodes are large, delicate, and expensive, and are not suitable for point-of-use or point-of-care measurements. This work utilizes cotton thread as a substrate for fabrication of robust and miniaturized ISEs that are suitable for point-of-care or point-of-use applications. Thread-based ISEs selective for Cl−, K+, Na+, and Ca2+ were developed. The cation-selective ISEs were fabricated by coating the thread with a surfactant-free conductive ink (made of carbon black) and then coating the tip of the conductive thread with the ion-selective membrane. The Cl− ISE was fabricated by coating the thread with an Ag/AgCl ink. These sensors exhibited slopes (of electrical potential vs. log concentration of target ion), close to the theoretically-expected values, over four orders of magnitude in concentrations of ions. Because thread is mechanically strong, the thread-based electrodes can be used in multiple-use applications as well as single-use applications. Multiple thread-based sensors can be easily bundled together to fabricate a customized sensor for multiplexed ion-sensing. These electrodes require volumes of sample as low as 200 μL. The application of thread-based ISEs is demonstrated in the analysis of ions in soil, food, and dietary supplements (Cl− in soil/water slurry, K+ and Na+ in coconut water, and Ca2+ in a calcium supplement), and in detection of physiological electrolytes (K+ and Na+ in blood serum and urine, with sufficient accuracy for clinical diagnostics).