Issue 17, 2018

Size-based sorting of hydrogel droplets using inertial microfluidics

Abstract

Hydrogel droplets encapsulating cells and molecules provide a unique platform in biochemistry, biology, and medicine, including single-cell and single-molecule analysis, directed molecular evolution, and detection of cellular secretions. The ability to prepare hydrogel droplets with high monodispersity can lead to synchronization of populations, more controlled biomaterials, and more quantitative assays. Here, we present an inertial microfluidic device for passive, continuous, and high-throughput sorting of hydrogel droplets by size. The sorting is achieved due to size-dependent lateral inertial equilibrium positions: hydrogel droplets of different sizes have different equilibrium positions under the combined effects of shear-gradient lift and wall-effect lift forces. We apply this separation technique to isolate smaller hydrogel droplets containing microalgal colonies from larger empty droplets. We found that hydrogel droplets containing microalga Euglena gracilis (E. gracilis) shrink as cells grow and divide, while empty hydrogel droplets retain their size. Cell-laden hydrogel droplets were collected with up to 93.6% purity, and enrichment factor up to 5.51. After sorting, we were able to recover cells from hydrogel droplets without significantly affecting cell viability.

Graphical abstract: Size-based sorting of hydrogel droplets using inertial microfluidics

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2018
Accepted
16 Jul 2018
First published
17 Jul 2018

Lab Chip, 2018,18, 2575-2582

Size-based sorting of hydrogel droplets using inertial microfluidics

M. Li, M. van Zee, K. Goda and D. Di Carlo, Lab Chip, 2018, 18, 2575 DOI: 10.1039/C8LC00568K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements